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The effect of pore diffusion on the behavior of a slow, irreversible
reaction that takes place in parallel with a fast, reversible reaction
has been analyzed for the case where the reactions are first order
in a common reactant. When the resistance to pore diffusion is
significant, the apparent activation energy of the slow reaction
generally is not equal to one-half of the true activation energy.
Rather, the difference between the true and apparent activation
energies of the slow reaction depends on the equilibrium constant
and on the enthalpy change of the fast, reversible reaction. If the
equilibrium constant is small compared to one, or if the enthalpy
change of the fast, reversible reaction is close to zero, a significant
resistance to pore diffusion will not cause a falsification of the
activation energy of the slow reaction. The true activation energy
will be observed in these situations. However, if the equilibrium
constant of the reversible reaction is large compared to one and if
the enthalpy change of this reaction is large, the observed activation
energy for the slow, irreversible reaction in the presence of a sig-
nificant pore diffusion resistance can range from negative for an
endothermic reaction to much greater than the true activation
energy for an exothermic reaction. The analysis is applied to recent
data on the skeletal isomerization and parallel cracking of n-
hexane. © 1995 Academic Press, Inc.

INTRODUCTION

It is well known that pore diffusion, also referred to as
internal and intraparticle diffusion, can affect the behavior
of heterogeneous catalytic reactions taking place in po-
rous solid catalysts. In 1951, Wheeler (1) pointed out that
the reaction order that is observed experimentally may
be different from the true reaction order when pore diffu-
sion is a significant resistance, i.e., when there are severe
concentration gradients of reactants and products within
the catalyst particle. In the same paper, Wheeler also
showed that the observed activation energy of a reaction
will generally be about one-half of the true activation
energy when the resistance to pore diffusion is significant.
These effects commonly are referred to as falsification of
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the reaction order and falsification of the activation en-
ergy, respectively. Weisz and Prater (2) and Gupta and
Douglas (3) later extended Wheeler's analysis and devel-
oped a relationship between the apparent and true activa-
tion energies that is valid over the complete range of pore
diffusion resistance.

The selectivity of a network of reactions also can be
altered by the presence of a pore diffusion resistance.
Wheeler (1, 4) analyzed the effect of internal diffusion on
the selectivity of two simple reaction networks

A— B-— C (series or consecutive reactions)

g:l; (independent parallel reactions)

and derived expressions for the apparent selectivity of
these two networks in the presence of pore diffusion.
Wheeler also discussed qualitatively the effect of pore
diffusion on parallel reactions involving a common re-
actant, i.e.,

A—R

N S (A)
Roberts (5) later provided a quantitative analysis of this
network.

Extensive theoretical literature has developed over the
last four decades on interactions between chemical reac-
tion and pore diffusion. At various times, Satterfield and
Sherwood (6), Satterfield (7), and Froment and Bischoff
(8) have provided useful summaries of the state of the
art. Much of the existing analysis has concerned single,
irreversible reactions. Reversible reactions, especially
ones that are part of a network of reactions, have probably
received less attention than warranted by their frequency
of occurrence and by their practical significance.

Recently, Otten et al. (9) studied the isomerization
of n-hexane over platinum mordenite catalysts in the
presence of hydrogen at atmospheric pressure and at
temperatures that ranged from 513 to 573 K. They
observed that the primary and kinetically rapid reac-
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tions, the skeletal isomerizations of n-hexane to 2-
and 3-methyl pentane, were accompanied by a slower
cracking of hexane to lighter paraffins. Under the condi-
tions of their study, the skeletal isomerization is thermo-
dynamically reversible, with an equilibrium constant on
the order of unity. The cracking reactions are essentially
irreversible. Although the actual chemistry is much
more complex, the overall reaction network for this
system may be represented as

n-CH s == i-C{H,, (fast)
h light paraffins (slow)

Otten et al. (9) found that the apparent (experimentally
measured) activation energy for the fast reaction, the
skeletal isomerization, was about one-half of the activa-
tion energy that had been reported by other investiga-
tors. However, the apparent activation energy of the
parallel reaction, hexane cracking, was close to that
reported in the literature. These results are summarized
in Table 1.

Otten et al. (9) attributed the decreased activation en-
ergy for the skeletal isomerization reaction to a strong
pore diffusion influence. However, this hypothesis con-
tradicts the existing body of theory in one important re-
spect. Specifically, for two parallel, irreversible reactions
with a common reactant, i.e., reactions A above, it can
be shown (14) that the apparent activation energy of both
reactions should be reduced significantly by the presence
of a strong pore diffusion resistance. Thus, the high activa-
tion energy of the cracking reactions that was measured
by Otten et al. (9) appears to contradict their hypothesis
that a strong pore diffusion resistance was responsible for
the lower apparent activation energy of the isomeriza-
tion reactions.

The objective of this paper is to provide a theoretical
basis to support the interpretation provided by Otten et
al. (9). Obviously, this analysis must rest on the reversibil-
ity of one of the parallel reactions, e.g., the isomerization
reactions in the referenced study.

TABLE 1

Measured Activation Energies for
n-Hexane Reactions

Activation energy (Kcal/mol)

Reaction Otten et al. (9) Literature®
Isomerization 14-16 29-36 (10-12)
Cracking 35-40 35(13)

Note. Reference numbers are given in parentheses.
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METHODS AND RESULTS

Analytical Approach

Consider the reactions

A=R
Ng

taking place in a porous catalyst. All three reactions are
assumed to be first order in their respective reactants. A
rigorous, general analysis of simultaneous diffusion and
reaction inside a porous catalyst particle for this system
is beyond the scope of this paper and will be presented
elsewhere (14). For the present purpose, a simplifying
assumption will be made that avoids much of the mathe-
matics and also provides physical insight into the phenom-
ena that give rise to the observed results (9). This assump-
tion is that the net rate of the reversible reaction, i.e., the
difference between the rates of the forward and reverse
reactions A — R and R — A, is large compared to the
rate of the slow reaction A — S throughout most of the
interior of the catalyst particle. When this assumption is
valid, the concentration profile of reactant A inside the
particle is determined almost totally by the kinetics of the
reversible reaction and by the rate of pore diffusion. The
kinetics of the slow, irreversible reaction have little effect
on this concentration profile. However, the overall rate
of the slow reaction will be determined by the profile of
reactant A since the reaction A — S is first order in A.

This simplifying assumption can be valid over a broad
range of pore diffusion resistances, e.g., catalyst particle
sizes. However, it will not apply when the resistance to
pore diffusion is extremely high, such that A cannot dif-
fuse into the particle as rapidly as it is consumed by the
slow reaction, A— S. This limitation is described in more
detail below.

For mathematical simplicity, the catalyst particle is as-
sumed to be an infinite slab of thickness 2L, as shown in
Fig. 1 and is assumed to be isothermal. The differential
equation that describes the simultaneous diffusion and
reaction of species A within the particle is

&C,
A dx?

ky

D :leA—E

Cr + k;C4,

where C; is the concentration of species i, D, is the diffu-
sion coefficient of species i, &, is the forward rate constant
for the reaction A — R, k; is the rate constant for the
reaction A — S, K is the equilibrium constant for the
reaction A — R, and x is the distance from the centerline
of the catalyst particle. Since the reaction A — S is as-
sumed to be very slow compared to the net rate of the
reversible reaction, the last term on the right-hand side
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FIG. 1. Geometry of catalyst particle.

of this equation may be neglected to give

&C,

k
DA'Elx—zz kiCa — l

ECR' [1]

As implied in the preceeding paragraph, it is not valid
to neglect k,C, relative to [k,C, — (k,/K)CR] once the
resistance to pore diffusion becomes so high that the maxi-
mum rate of diffusion into the interior of the catalyst
particle is comparable to the intrinsic rate of the slow
reaction. In that case, Cyx/K can exceed C,, such that the
A that is converted to S is provided to some extent by
the reaction R — A (14).
Equation [1] is subject to the boundary conditions

dC, _
W =0, x=0 [la]
Ca=Cay, x=L. [1b]

The subscript s denotes a condition at the surface of the
catalyst particle, i.e., at x = L.

The differential equation that describes the simultane-
ous diffusion and reaction of species R within the parti-
cle is

£Cy

DR de

k
= —k,Cyp + E'CR, 2]

which is subject to the boundary conditions

dCy _
dx

CR= CR,S’ x=1L.

x=0 [2a])

(2b]
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The system of Eqgs. [1], [1a], [1b], [2], {2a], and [2b] has
been solved by Smith and Amundson (15). The solution is

. DRTc
CA(x) - (KDR + DA) + [CA.S
_ TDy Cosh ax (3]
(KDg + Dy) | Cosh¢’
where
D
Tc = CR.S + (D—:)CAS [4]
=L [k <—1— + I ) [5]
¢= "\D, KDy
_ (L, 1
a= k'(DA+KD ) [6]

The parameter ¢ defines the Thiele modulus for this sys-
tem of reactions. Equation [3] gives the value of C, at
every position, x, inside the catalyst particle.

The rate of disappearance of reactant A per unit of
geometric surface area of catalyst is

dC
r=0y| 5], 7

Differentiating Eq. [3] with respect to x, evaluating the
resulting expression at x = L, and substituting into Eq.
(7] gives

R, = Ta';h ¢ {Lk,[c&s - C;]} 8]

Equation [8] has the expected form, i.e., R, = (effective-
ness factor) X (rate that would be observed if there were
no concentration gradients inside the catalyst particle).
The effectiveness factor, 7, is given by Tanh ¢/¢. The
rate that would exist if there were no gradients is given
by the expression within the outermost brackets on the
right-hand side of Eq. [8].

When the resistance to pore diffusion is high, ¢ is large
(e.g., > about 3) so that

Tanh¢ _ 1
¢ ¢

If, as assumed, the reaction A — S is very slow, the rate
of disappearance of A is essentially equal to the rate of
formation of R, i.e., R, = Ry, so that Eq. [8] becomes

]

Rr =R, Zé{Lkl [CA'S -
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Inthe above, the prime designates a region of ‘*‘moderate’”
pore diffusion resistance. This equation will be a reason-
able approximation for ¢ > about 3 and for ¢»; < about 0.5,
where ¢; is the Thiele modulus for the slow reaction, i.e.,

¢, = LVkID,.

The latter criterion results from the requirement, outlined
earlier, that the rate of pore diffusion be rapid compared
to the rate of the slow reaction. The region ¢ > about
3 and ¢; < about 0.5 constitutes a reasonable working
definition of the regime of ‘‘moderate’’ pore diffusion re-
sistance.

Substituting Eq. [5] for ¢ gives

Vik, C
= [CA,S—%] [9]
1 1
(EI*KD;)

The rate of formation of species S is given by

Ry =R, =

RszLLk3CAdx=k3LLCAdx.

Substituting the expression for C,, Eq. [3], into the above
and integrating gives

Re o ( kyDeT,L )( ; _ Tanh ¢>)
S \KDy+ D, ¢

Tanh ¢

+ kyLCy (10]

Since k; < k, and since n = Tanh ¢/¢ < 1 in the region
of moderate pore diffusion resistance, Eq. [10] reduces to

Ry = (alellL )
ST \KDy + D,

[11]

The physical significance of this equation is easier to
understand if it is assumed that D, = Dy. This simplies
Eq. [11] to

[12]

- Crs + CA,S)
Rs= k3L( K+1

The quantity (Cg, + C, )/(K + 1) is the equilibrium
concentration of A, C, .. Equation [12] shows that, for
large ¢ and small ¢;, the rate of formation of S is simply
the product of the rate constant, k;, the half-width of the
catalyst particle, L, and the equilibrium concentration of
A. This equation implies that, when the resistance to pore
diffusion is sufficiently large, C, reaches its equilibrium
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concentration a very short distance into the pellet, as
shown in Fig. 2. The driving force for the reaction A —
S then is a constant concentration of A (C, .,) throughout
the whole catalyst particle.

Temperature Dependence

The analysis of the temperature dependence of R, and
Rg can be simplified by assuming that D, = Dyg. This
assumption is already embodied in Eq. [12]. To simplify
further, it will be assumed that (Cy /K) < C, . This
inequality will be met when the composition of the fluid
at the catalyst surface is far from the equilibrium composi-
tion. In the studies of Otten et al. (9), there were no
branched hexanes in the feed to the reactor and the frac-
tional conversion of n-hexane was very low so that
Crs = 0. The assumptions that (Cg /K) < C,, and
D, = Dy reduces Eq. [9] to

R = VD _K_

AR A

[13]
and the former assumption reduces Eq. [12] to

[P CA.S
)

The parameters &, k5, and D, may be written in Arrhen-
ius form, i.e.,

(14]

— A o—E/RT
k=A™

— —Ey/RT
ky = Ase™5

= ~Ep/RT
D, = Ape B0/

J

[15]
[16]
[17]

Cas

]
>
3

e

Bulk
Fluid

Catalyst
Interior

x=0 x=L

FIG. 2. Concentration profile of reactant A inside the catalyst parti-
cle in the regime of moderate pore diffusion.
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and the equilibrium constant can also be written in expo-
nential form as
K = Age Ar/RT [18]

where A Hy is the enthalpy change for the reaction A— R.
Now consider two cases:

Case A (K < 1). Neglecting K in the term (K + 1)
and substituting Eqgs. [15], [17], and [18] into Eq. [13] gives

Ry = WCA_S =[A IADAE€¥(EI+ED+AHR)/R7]IIZCA‘S

so that the apparent activation energy for the fast reaction
{A — R) in the regime of moderate pore diffusion is

E,opfast) = (E, + E;, + AHR)/2. (19]
In general, the “‘activation energy’’ for diffusion, £, is
of the order of a few Kcal/mol and may be neglected
relative to E,, the true or intrinsic activation energy of
the reaction A — R. However, Gupta and Douglas (16)
have provided an example where this assumption is not
valid, i.e., where E;, cannot be neglected relative to E,.

The heat of reaction for A — R, AHg, can vary over
a wide range. If this reaction is exothermic, AHg < 0 and
its effect will be to reduce the apparent activation energy
to less than E;/2. This reduction can be very significant
with a reaction that is highly exothermic, such that the
magnitude of AHy is comparable to that of E,. For some
reversible reactions, e.g., methanol synthesis, the magni-
tude of AH} can exceed that of E,, making the apparent
activation energy of the reversible reaction zero or
even negative.

When the reaction A — R is endothermic, AHy > 0,
which tends to increase the apparent activation energy
according to Eq. [19]. In this case, the expected diminu-
tion of the apparent activation energy by pore diffusion
is moderated, or perhaps even eliminated. On balance, the
activation energy of the fast reversible reaction exhibits
relatively ‘‘normal’’ falsification behavior, although the
situation is more complex than with an irreversible reac-
tion because of the added effect of AHy.

For the reaction A— S, when K < 1, Eq. [14] becomes

Rs=kiLCy
and the apparent activation energy is simply
Epp(slow) = Ej. [20]

For this case, there is no falsification of the activation
energy of the slow, irreversible reaction.

ROBERTS AND LAMB

Case B (K > 1). This case must be approached with
some caution. If K is too large, it may no longer be valid
to neglect the third term on the right-hand side of Eq.
[10]. With this disclaimer, Eq. [13] becomes

R =VkD,C,, = [AlAuef(E'JfE”)/m]mCA,s

and the apparent activation energy of the fast reaction is

E, (fast) = (E, + Ep)/2. [21]

This result shows ‘‘normal’’ falsification behavior; i.e.,
the apparent activation energy is reduced by a factor of
about 2.

For K > 1, Eq. [14] reduces to

k A
Ry = E3LCA.S = A_-‘e—(E]—AHRHIeTLCAS
E

and the apparent activation energy for the reaction A —
S in the regime of moderate pore diffusion is

E,(slow) = E; — AHg. (22]
The value of the apparent activation energy for the slow
reaction depends on the value of the enthalpy change
of the fast, reversible reaction. The apparent activation
energy will deviate significantly from the true activation
energy if the magnitude of A Hy is large compared to that
of E;. If the fast, reversible reaction is exothermic, the
apparent activation energy of the slow reaction will be
higher than the true activation energy, by a factor of 2 or
more for highly exothermic reactions. The exact opposite
is true for endothermic reactions, where a large positive
value of AHy can make the apparent activation energy
negative. If AHg = 0, there will be essentially no falsifica-
tion of the activation energy of the slow reaction.

DISCUSSION

In the regime of moderate pore diffusion, the apparent
(experimentally observed) activation energy of the slow
reaction shows some very unusual behavior, which appar-
ently has not been recognized previously. None of the
cases examined in this paper leads to a *‘conventional’’
relationship, where the apparent activation energy of the
slow reaction is approximately one-half of the true activa-
tion energy when pore diffusion is significant. Instead,
the apparent activation energy of the slow reaction varies
from a negative value to a value that exceeds the true
activation energy, depending on the thermodynamic prop-
erties of the fast, reversible reaction.
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The strong influence of these thermodynamic parame-
ters can be understood by referring to Fig. 2. In the regime
of a moderate resistance to pore diffusion, the concentra-
tion gradient of reactant A inside the catalyst particle is
very steep, and the concentration of A falls to its equilib-
rium value, C, 4.,  very short distance from the external
surface of the catalyst particle. Therefore, essentially the
whole interior of the particle is at this equilibrium concen-
tration. The rate of formation of S is the product of the
rate constant, k,, the half-width of the particle, L, and
Chaeq- The temperature dependence of this reaction rate
arises from a combination of the temperature dependen-
cies of k; and C,.,. The equilibrium concentration de-
pends on the equilibrium constant, X, which, in turn de-
pends exponentially on AH/RT. If the enthalpy of
reaction is negative, i.e., the reaction is exothermic, C, .,
will increase towards a limit of C, ; as the temperature
increases. Directionally, this increase reinforces the in-
crease of the rate constant k; with temperature, causing
the apparent activation energy of the slow reaction to
exceed the true value.

Conversely, if the reversible reaction is endothermic,
Caq decreases with increasing temperature, which off-
sets the effect of temperature on the rate constant X,
to some extent. If the endothermic heat of reaction is
sufficiently large, the decrease of C, ., with temperature
can be the dominant effect, leading to an apparent nega-
tive activation energy.

Finally, if the equilibrium constant X is very small com-
pared to unity, an unlikely situation in actual practice,
Chaeq Will be essentially equal to C,  and will not vary
with temperature. Also, if AHg = 0, K and C, ., will not
vary with temperature. For these cases, the only effect
of temperature on the rate of formation of product S will
occur via the rate constant &5, so that the true activation
energy for the slow reaction will be experimentally ob-
served for these two circumstances.

The n-hexane isomerization and cracking reaction sys-
tem studied by Otten et al. (9) does not correspond exactly
to either of the limiting cases treated above (K > 1 and
K < 1). At their conditions, the equilibrium constant of the
reversible hexane isomerization was about one. However,
the enthalpy of reaction for the skeletal isomerization of
n-hexane is only a few Kcal/mol, and is negligible com-
pared to the values of E| given in Table 1. For AHy = 0,
there is no falsification of the activation energy of the
slow reaction for either limiting case, as shown by Eqs.
[20] and [22]. Moreover, Eqgs. [19] and [21] show that
there should be a normal falsification of the activation
energy of the hexane isomerization reaction; i.e., E,,, =
E,/2 for both cases. Thus, the results and interpretation
presented by Otten ez al. (9) are consistent with the pres-
ent analysis.
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CONCLUSIONS

The effect of pore diffusion on the behavior of a slow,
irreversible reaction that takes place in parallel with a
fast, reversible reaction has been analyzed. The apparent
activation energy of the reversible reaction exhibits rela-
tively normal falsification behavior, complicated to some
extent by the effect of the enthalpy change of the reaction.
The apparent activation energy of the slow reaction gener-
ally is not equal to one-half of the true activation energy.
Rather, in the regime of moderate pore diffusion resis-
tance, the difference between the apparent and true acti-
vation energies of the slow, irreversible reaction depends
primarily on the equilibrium constant and the enthalpy
change for the fast, reversible reaction.

If the equilibrium constant is small compared to one,
or if the change in enthalpy of the reversible reaction is
close to zero, there will be no falsification of the activation
energy of the slow reaction. The true activation energy
of this reaction will be observed, even when the resistance
to pore diffusion is significant. For the hexane isomeriza-
tion reaction studied by Otten et al. (9), the enthalpy of
reaction is of the order of a few Kcal/mol. Therefore, the
observed activation energy of the parallel, slow cracking
reaction should be close to the true activation energy.
Thus, this analysis supports their interpretation of the
experimental data.

If the equilibrium constant of the fast, reversible reac-
tion is large compared to one and if the magnitude of the
enthalpy change of this reaction is large, the observed
activation energy of the slow, irreversible reaction can
range from negative for an endothermic reaction to much
greater than the true activation energy for an exother-
mic reaction.

APPENDIX: NOMENCLATURE

Ay, A, pre-exponential factors in Arrhenius rela-
tionships for &, and &, (s™')

Ap pre-exponential factor in Arrhenius relation-
ship for D, (m?%/s)

Ag pre-exponential factor in expression for K
(Eq. [18]) (dimensionless)

C, concentration of species i (mol/m?)

D, diffusion coefficient of species i (m?/s)

E,, E;, E, activation energies for k,, k;, and D ,, respec-
tively (cal/mol)

ki, ky rate constants for A— Rand A — S, respec-
tively (s7)

K equilibrium constant for A « R (dimen-
sionless)

L half-thickness of catalyst particle (m)

R, rate of disappearance of species i per unit
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¢

AHy

Subscripts

app
A

€q
R
s
S

Superscript

/

ROBERTS AND LAMB

geometrical surface area of catalyst parti-
cle (mol/s, m?

gas constant (cal/mol, K)

temperature (K)

parameter defined by Eq. [4] (mol/m?)

parameter defined by Eq. [6] (m™")

effectiveness factor (dimensionless)

Thiele modulus, defined by Eq. [5] (dimen-
sionless)

Thiele modulus for reaction A — S (dimen-
sionless)

enthalpy change for reaction A — R (cal/
mol)

apparent

reactant A

equilibrium

product R

catalyst surface, i.e., x = L
product S

region of moderate pore diffusion resistance

14.
15.

16.
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